

# Improved CXCR4-targeted radioligand therapy in neuroendocrine prostate cancer

IR. Astiazarán-Rascón<sup>1,2</sup>, MG. Jaraquemada-Peláez<sup>1</sup>, S. Kurkowska<sup>2</sup>, M. Ligeour<sup>1</sup>, H. Merkens<sup>1</sup> and F. Bénard<sup>1,2</sup>

<sup>1</sup> University of British Columbia, Vancouver, Canada

<sup>2</sup> BC Cancer Research Institute, Vancouver, Canada





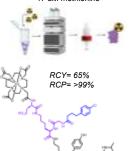






# INTRODUCTION

Neuroendocrine prostate cancer (NEPC) is an aggressive subtype of prostate cancer and patients usually have a poor prognosis. Overexpression of c-x-c chemokine receptor 4 (CXCR4) has been reported in NEPC clinical samples and is a promising target for radiopharmaceutical therapy (RPT)¹. To enhance therapeutic efficacy, we investigated the use of weak albumin-binding moieties to increase tumor uptake and increase the absorbed dose of beta-emitters².


# **AIM**

Evaluate the therapeutic efficacy of a CXCR4-targeting radiopharmaceutical with extended circulating half-life.

# **METHOD**

[177Lu]BL34T1 radiolabelling

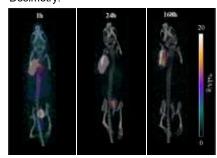
2.4 GBq [<sup>177</sup>Lu]LuCl<sub>3</sub> + 10 nmoles precursor in 0.5 mL of buffer pH 5 (0.1 M NaOAc pH 4.5, 7 mM gentisic acid + 4uM ascorbic acid + 47 uM methionine



NEPC PDX (LTL-331R ) xenograft

Saline N=20 (85.9 ± 41.2 mm³)

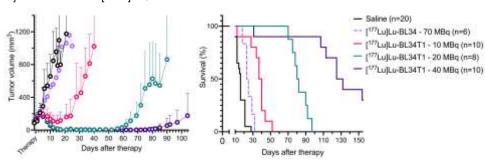
9.5 ± 0.9 MBq N=10 (96.8 ± 58.9 mm<sup>3</sup>)


21.0 ± 2.3 MBq N=8 (95.0 ± 57.4 mm<sup>3</sup>)

44.8 ± 1.8 MBq N=10 (108.9 ± 57.0 mm<sup>3</sup>)

Preclinical dosimetry
Tumor growth
Survival
Blood cell counts

## **RESULTS**

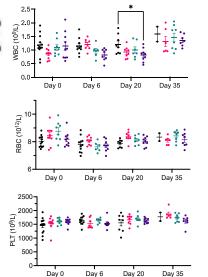

[177Lu]BL34T1 SPECT/CT and preclinical Dosimetry.



| Organ                   | %IA*h  | Organ dose<br>(mGy/MBq) |
|-------------------------|--------|-------------------------|
| NEPC tumor <sup>a</sup> | 1693.7 | 13,900                  |
| Blood                   | 308.8  | -                       |
| Heart                   | 11.5   | 62.1                    |
| Kidneys                 | 63.7   | 190                     |
| Liver                   | 335.4  | 179                     |

<sup>a</sup>Calculated using a sphere mass model of 100 mg

Tumor growth curves and survival curves of NEPC PDX tumor-bearing mice treated with different injected activities of [177Lu]BL34T1.




Therapy study design and evaluation of therapy efficacy.

| Group                                    | Injected<br>activity | TGI%<br>Day 8 | TGI%<br>Day 12 | Median OS<br>(Days) | CR<br>Day 90 |
|------------------------------------------|----------------------|---------------|----------------|---------------------|--------------|
| Saline <sup>b</sup>                      |                      | -             | -              | 16                  | 0/20         |
| [ <sup>177</sup> Lu]Lu-BL34 <sup>b</sup> | 70 MBq               | 33%           | 38%            | 24                  | 0/6          |
| [ <sup>177</sup> Lu]Lu-BL34T1            | 10 MBq               | 36%           | 84%            | 38.5                | 0/10         |
| [ <sup>177</sup> Lu]Lu-BL34T1            | 20 MBq               | 43%           | 93%            | 81                  | 0/8          |
| [ <sup>177</sup> Lu]Lu-BL34T1            | 40 MBq               | 57%           | 95%            | > 90                | 2/10         |

<sup>b</sup>Data obtained and pooled from a previous study.

# Blood cell count analysis of NRG mice at days 0, 6, 20 and 35 after treatment



#### •

## **CONCLUSIONS**

- [177Lu]Lu-BL34T1 resulted in high tumor-to-normal organs absorbed doses optimal for RPT.
- Therapy studies resulted in improved therapy efficacy of [¹¹7²Lu]Lu-BL34T1 in comparison a non-albumin binding radiopharmaceutical ([¹¹7²Lu]Lu-BL34).
- No significant toxicities were observed.
- CXCR4 is a promising target for the treatment of advanced prostate cancers that do not respond to current therapies.

#### REFERENCES

- Werner C, Dirsch O, Dahmen U, Grimm MO, Schulz S, Lupp A. Evaluation of Somatostatin and CXCR4 Receptor Expression in a Large Set of Prostate Cancer Samples Using Tissue Microarrays and Well-Characterized Monoclonal Antibodies. Translational Oncology. 2020 Sep;13(9):100801.
- Kuo HT, Merkens H, Zhang Z, Uribe CF, Lau J, Zhang C, et al. Enhancing Treatment Efficacy of 177Lu-PSMA-617 with the Conjugation of an Albumin-Binding Motif: Preclinical Dosimetry and Endoradiotherapy Studies. Mol Pharmaceutics. 2018 Nov 5;15(11):5183–91.

#### **ACKNOWLEDGEMENTS**

We thank Dr. Yuzhuo Wang from BCCRI for providing NEPC PDXs; Pauline Ng and BCCRI animal facility for providing dedicated housing room and technical support; ITM Medical Isotopes GmbH, Germany, for providing non-carrier-added lutetium-177.

#### CONTACT INFORMATION

E-mail: iastiazaran@bccrc.ca