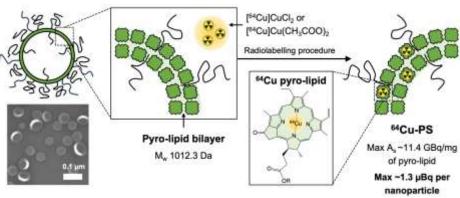


Characterisation of a murine ovarian cancer model for nanoparticle-based radiotheranostics

Michael S. Valic, Mark Zheng, Lili Ding, Juan Chen & GANG ZHENG

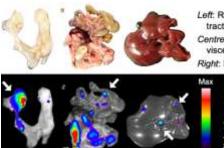

Princess Margaret Hospital, University Health Network (Toronto, Canada) © 2025

Summary of findings:

- Developed an immune competent mouse model of ovarian cancer with intra-abdominal and hepatic metastases 8 weeks post-implantation
- ⁶⁴Cu-labelled nanoparticles exhibited significant uptake and retention in ovarian tumours post injection:
 - *IP route*: C_{max} 25.6 %I.D./mL (T_{max} 3 h), AUC_{96h} 975 %I.D./mL*h
 - *IV route*: C_{max} 12.4 %I.D./mL (T_{max} 24 h), AUC_{96h} 927 %I.D./mL*h
- · Uptake of particles in metastases and "off-target" tissues (e.g. kidneys) was similar for both administration routes

Intro to radiotheranostic porphyrin-lipid nanoparticles

PORPHYSOMES (PS) are nontargeted nanoparticles assembled from ~68,000 pyro-lipid building blocks per particle and capable of chelating Copper (Cu) radiometals: positron-emitting ⁶⁴Cu and β ⁻ emitting ⁶⁷Cu.

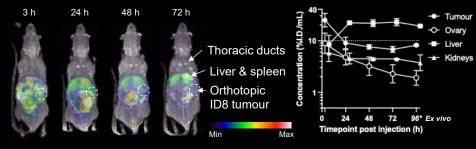


Research motivation & objective

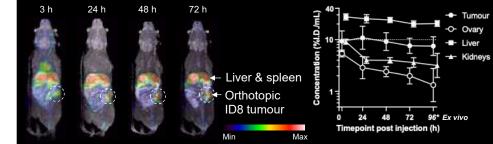
First-in-human radiotracer imaging studies with ⁶⁴Cu-PS are underway at Princess Margaret in women with advance gynaecological cancers. Succeeding studies using ⁶⁷Cu-PS for radiopharmaceutical therapy and patient priming for immune checkpoint therapy are planned.

To enable the translational of ⁶⁷Cu-PS into patients, we developed an immunologically-relevant ovarian cancer model in mice and characterised the tumour uptake of ⁶⁴Cu-PS radiotheranostics for planning future proofof-principle safety and efficacy studies using ⁶⁷Cu.

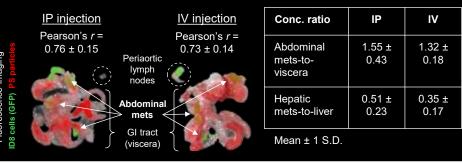
Characterisation of syngeneic orthotopic ID8-Luc⁺ ovarian cancer model in female C57/BL6 (immune competent) mice



Site	Incidence rate (%) [†]
Primary tumour	≥ 90%
Intra-abdominal metastases	≥ 80%
Hepatic metastases	≥ 70%
	Primary tumour Intra-abdominal metastases Hepatic


^{†8} weeks post-implantation.

Serial PET/MR imaging of ⁶⁴Cu-PS uptake in orthotopic ID8 ovarian models: IP vs. IV routes


Intra-peritoneal (IP) injection: 3.8 ± 0.8 GBq ⁶⁴Cu/kg, 3.5 ± 0.7 mg/kg, N=3

Intra-venous (IV) injection: 4.3 ± 1.2 GBq ⁶⁴Cu/kg,10.7 ± 2.3 mg/kg, N=6

Ex vivo distribution of ⁶⁴Cu-PS to tumour metastases 96 h post-injection: IP vs. IV routes

Next steps

- 1. Estimate radiation dosimetry for planning treatments using ⁶⁷Cu-PS
- 2. Explore folate receptor (FR) targeting for improved ID8 tumour uptake

Centre: Abdr