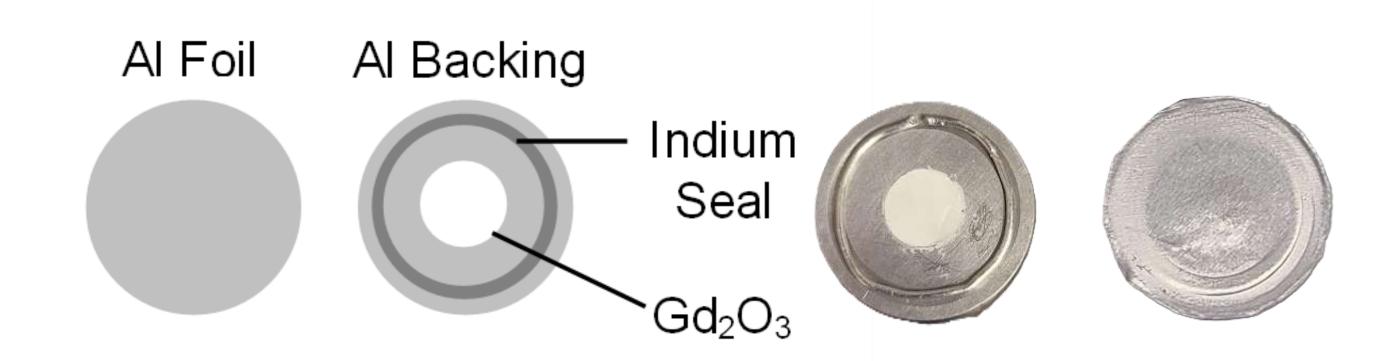
RIUMF

Cyclotron Production of Tb-155 from Gd₂O₃ Targets: From Design to Preliminary Results

Scott W. McNeil^{a,b}, Hua Yang^{a,b,c} ^a Life Science Division, TRIUMF; ^b Department of Chemistry, University of British Columbia; ^c Department of Chemistry, Simon Fraser University


Introduction

Terbium-155 ($t_{1/2}$ =5.32 days) is one of four medically relevant terbium (Tb) isotopes and has suitable gamma emission for Single Photon Emission Computed Tomography (SPECT) imaging.¹ With identical chemical properties as other Tb isotopes, ¹⁵⁵Tb is an element equivalent imaging companion for ¹⁶¹Tb (β ⁻ therapy). ¹⁵⁵Tb is also being investigated as the imaging companion to other radionuclides like ²²⁵Ac.

Historically, ¹⁵⁵Tb has been produced in small quantities via on-line mass separation of high-energy spallation products of heavier elements like Ta.² This method is unsuitable for routine production of ¹⁵⁵Tb as the cost of production is high for a relatively low yield. Current research efforts have focused on the production of ¹⁵⁵Tb from enriched Gd₂O₃ targets via proton irradiation in low energy cyclotrons.³

Herein displays the design, manufacture and preliminary irradiation data of natural Gd₂O₃ targets irradiated at TRIUMF's TR13 cyclotron.

Target Design

Figure 1: (left) Schematic of Gd_2O_3 target, (right) photographs of a target in assembly and a sealed target

Design Considerations:

- Due to the fragile nature of the Gd_2O_3 target an AI foil cover was added. This cover is sealed to the backing with indium wire
 - To overcome the poor thermal conductivity of the Gd_2O_3 target material, an AI backing was chosen, and the maximum beam current was limited to 20 µA.
 - The thickness of the AI foil cover was optimized using SRIM calculations⁴ to degrade the incident proton energy to 10.8 MeV minimize the ¹⁵⁵Gd(p,2n)¹⁵⁴Tb reaction.

THE UNIVERSITY OF BRITISH COLUMBIA

Irradiation Results

(Activities reported at EOB).

Irradiation Time (min)	Current (µA)	¹⁵⁵ Tb (MBq)	¹⁵⁶ Tb ^{m/g} (MBq)
10	2	0.204	0.272
10	5	0.368	0.506
10	10	0.860	1.215
10	15	1.945	2.439
10	20	3.129	3.864
30	20	3.858	5.645
60	20	11.813	15.937

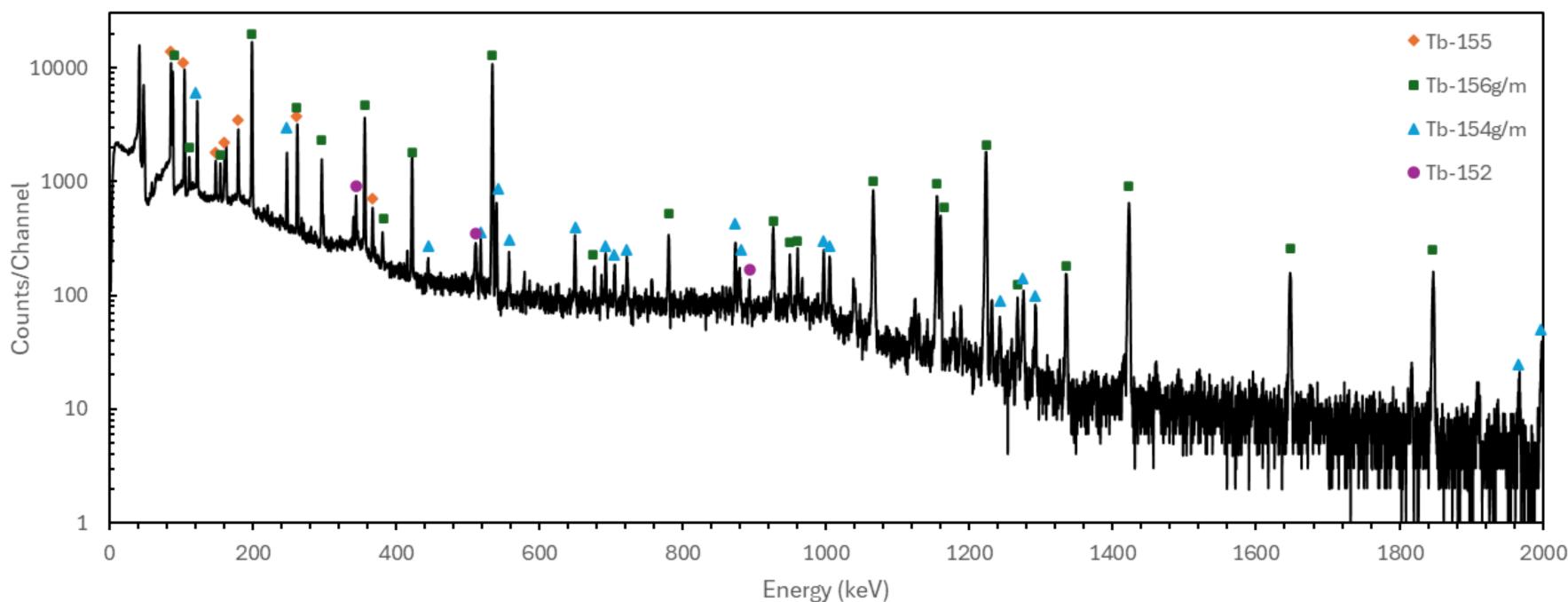


Figure 2: Gamma spectrum of dissolved target solution, recorded on a Canberra HPGe detector, live time 1831 s

Figure 3: Unsealed Gd_2O_3 targets post irradiation (from left to right 5 μ A, 10 μ A, 15 μ A, and 20 μ A

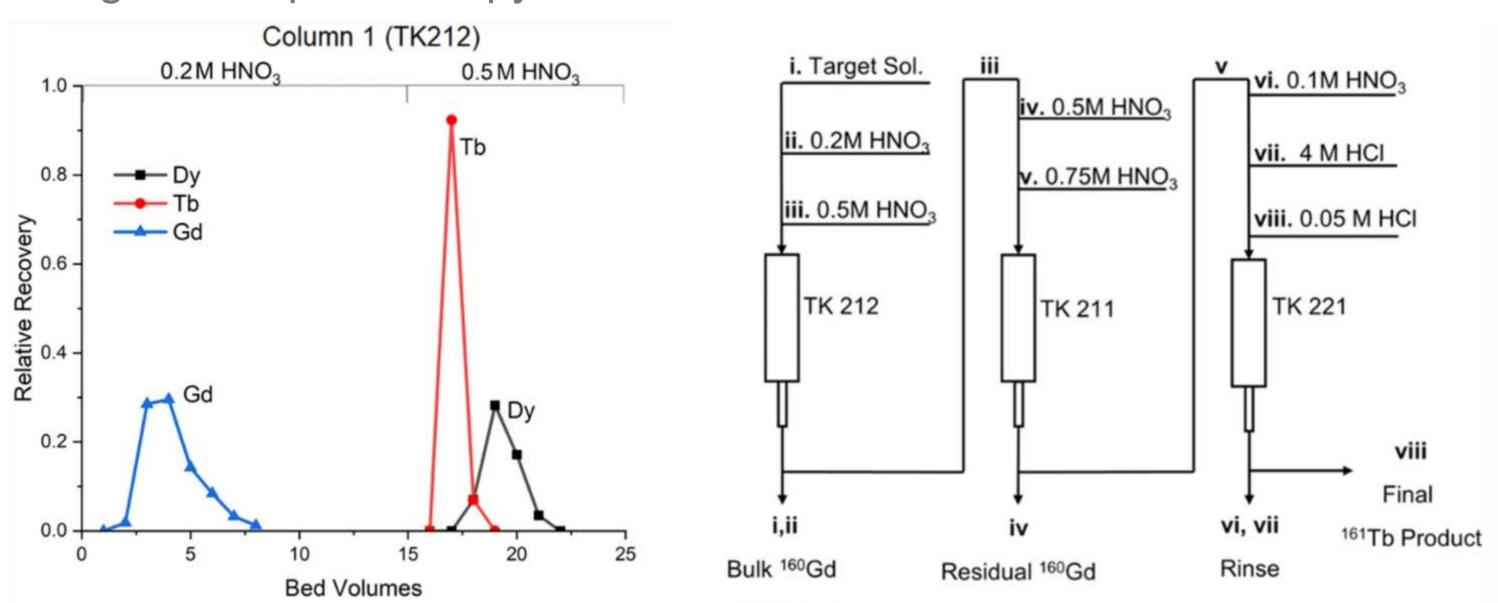


Table 1: Activity of Terbium isotopes from irradiations at increasing beam currents and times

The next steps towards the routine production of ¹⁵⁵Tb for pre-clinical applications include:

- will be attempted first.
- and gamma spectroscopy.

¹⁵⁵**Tb**.⁵

- greater radionuclidic purity.
- $[^{155}Gd]Gd_2O_3$.

Thank you to the TR-13 Team for irradiating the targets, Dr. Cornelia Hoehr for guidance on calculations, and Geoff Hodgson for making the drawings of the target backings.

¹J. Nucl. Med. **2012**, 53, 1951 ²Nucl. Med. and Biol. **2021**, 94, 81 ³ EJNMMI radiopharm. chem. **2021**, 6, 37 ⁴Nucl. Instrum. Methods Phys. Res. B. **2010**, 268, 1818 ⁵EJNMMI radiopharm. chem. **2022**, 7, 31

Future Works

• The development of a suitable purification method to isolate Tb from the Gd target material. Modification of an established solid phase extraction method⁵

• To evaluate purification methods, samples will be assessed with ICP-MS,

Figure 4: Purification method of ¹⁶¹Tb, with potential to be modified for cyclotron produced

 Once the Tb product has reached suitable chemical and radiochemical purity, chelation study with ligands and bioconjugates will be tested.

• With the process fully established for natural Gd₂O₃ targets Enriched ¹⁵⁵Gd]Gd₂O₃ targets will be used to produced higher activities of ¹⁵⁵Tb with a

• The purification method will include a recycling procedure to reclaim

Acknowledgements:

References:

Discovery, accelerated